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1. Table 1 summarizes the results.
2. This parameter is estimated by the observations.
3. We give informations of this model in table 1.
4. The increase of temperature became significant.

5. Assuming that the radiation pressure is dominant, the disk flux and disk central
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6. The temperature and sound speed became asymptotically constant at large dis-

tance from the center.

7. In appendix 1, we discuss a restriction on k-space, which enables us the develop-

ment in terms of the orthogonal functions we are concerned.
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1. The density of model A is different from model B.
2. The temperature of sample 1 is much higher than sample 2.
3. The velocity approaches to the light speed.
4. In the case of the present method, we used 10,000 particles of equal mass.
5. We discuss about detailed structures of this system.
6. We measure on the temperature of this state.
7. We applied this method, threfore we obtained these results.
8. The pressure increased due to this instability.
9. The followings are obtained.

10. The parameters are the followings.

11. This is explained in details in section 4.

12. This effect can be negligible.

13. This is found in a HII region.
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The effect of mass stripping of these systems are shown below.
We found an excellent agreement with the experiment by Landau.
Different from model A, model B has another parameter.

In this equation, M and L represent the mass and angular momentum of the
system.

The galaxy was observed by HST.

The density increases monotonously.

The dependency of this value on the final density is explained.

In the previous paper, we showed a mass stripping rate of merging galaxies.
We obtained knowledge on the phase transition.

An investigation was made concerning this mechanism.

The procedure of this analysis is described.

The paper is referred as Paper 1.

This model resemble to model A.

The temperature was changed in a range from 5,000K to 10,000K.
These objects are observed at high temperature regions.

These experiments are planned in similar conditions.

The object was observed with a regular interval.

The deferences of these models are described.

Assuming that this theory holds, an infinite amount of light is generated.
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7.1 TITLE

Hozumi: A Test on the Accuracy of a Self-Consistent Field Method for Spherical

Stellar Systems
Hernquist: A Comparison of Two Algorithms for Simulating Collisionless Systems



7.2 ABSTRACT

Hozumi

Hernquist

The accuracy of a self-consistent field
(SCF) method which solves Poisson’s
equation by expanding the density and
potential in a set of basis functions is
presented.

The results of collpase simulations for
spherical stellar systems with the SCF
method are compared to those with a
phase space method which integrates
the collisionless Boltzmann equation
directly.

The models used are uniform-density
spheres and Plummer models whose
velocity dispersions are assigned
according to given initial virial ratios.

The comparison provides excellent
agreement about the density and velocity
dispersion profiles between the two
methods.

Therefore, the results with the SCF
method are considered to correspond to

the N — oo limit.

The choice of a set of basis functions is
also discussed.
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Two completely different simulation algo-
rithms are compared by applying them to
the same stellar dynamical problems: one
is a self-consistent field (SCF) method
for solving Poisson’s equation and the
other is a phase-space method for inte-
grating the collisionless Boltzmann equa-
tion. We consider simulations of spher-
ical stellar systems which are initially
far from equilibrium and relax to
their final states by gravitational col-
lapse. The initial conditions consist of
either uniform-density spheres or non-
equilibrium models having Plummer den-
sity profiles, in which velocity dispersions
are assigned according to given virial ra-
tios. If a few tens of radial expansion
terms with hundreds of thousands of par-
ticles are used in the SCF code, excel-
lent agreement is found between the re-
sults it generates and those obtained with
the phase-space solver, provided that a
sufficiently large number of grid cells are
employed with the latter. These findings
imply that for simulating collisionless sys-
tems over many dynamical times, the SCF
approach based on sampling phase space
is competitive with the approach treating
phase space as a continuous fluid. The re-
sults of our tests make it possible to es-
timate the number of particles and basis
functions required in situations like those
modeled. Limitations of the SCF method
and the choice of an optimal set of ba-
sis functions are also discussed.
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Hernquist

In general, it is necessary to solve Pois-
son’s equation numerically in simula-
tions of self-gravitating stellar systems.

One of the most desirable numerical meth-
ods comes from calculating the gravita-
tional field by expanding the density and
potential in a set of basis functions.

In particular, when the radial depen-
dence as well as the angular one
is expanded, this approach gives the
closer spirit to the collisionless dynam-
ics in that particles interact with the field
which they experience. Hernquist & Os-
triker (1992) named it a self-consistent
field (SCF) method and discussed its ad-
vantages in detail in comparison to con-
ventional N-body methods (see also Sell-
wood 1987).
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In general, it is necessary to solve Pois-
son’s equation numerically when sim-
ulating self-gravitating collisionless sys-
tems.

One approach, termed the self-consistent
field (SCF) method by Hernquist & Os-
triker (1992; hereafter HO), owing to its
similarity to Hartree-Fock techniques from
quantum theory, calculates the gravita-
tional field by expanding the density and
potential in a set of basis functions.

In particular, when the full spatial de-
pendence of the potential and density
is expanded, this scheme represents the
gravity in a mean-field sense and, so, is
closer in spirit to collisionless dynam-
ics than other N-body algorithms in which
particles interact with one another directly
(for a discussion see, e.g. Sellwood 1987,
Barnes & Hernquist 1992).
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Hozumi
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Although SCF methods cannot describe
the small-scale structure of a stellar sys-
tem, they can overcome the difficulties
confronted with N-body methods.

Above all, the conspicuous characteristic
is no need for softening length. Conse-
quently, it brings the pure Newtonian force
field of a smoothed density distribution.

It is true that the introduction of soften-
ing length saves N-body simulations from
an excessive two-body relaxation (Sell-
wood 1987; Huang, Dubinski, & Carlberg
1993). However, as a side effect, softening
length makes a system spherical (Cannizzo
& Hollister 1993). In addition, the usual
form of softening length which changes
a point mass to an extended sphere
becomes physically inconsistent with force
law between two spheres (Dyer and Ip
1993).

12

Although SCF methods cannot describe
the small-scale structure of a stellar sys-
tem unless a prohibitively large num-
ber of basis functions are used, they
have several potential advantages over di-
rect N-body methods when applied to col-
lisionless dynamics.

For example, SCF codes do not require
the introduction of a softening length to
smooth out local irregularities in the den-
sity arising from the use of finite numbers
of particles

More important, the elegant structure
of the SCF method makes possible highly
efficient implementations of it on a vari-
ety of computer architectures. Prelimi-
nary tests of the HO algorithm on a Con-
nection Machine 5 demonstrate the fea-
sibility of simulations employing ~ 108
particles with existing hardware (Bryan
& Hernquist 1993; see Hillis & Boghosian
1993). Given the explosive growth of par-
allel computing and the perfectly scal-
able nature of the SCF approach, it seems
likely that simulations with particle num-
bers comparable to the actual number of
stars in galaxies will be possible in the near

future.
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In spite of no such problems men-
tioned above in SCF methods, they have
hardly been applied to stellar dynamical
simulations.

Recently, Hernquist & Ostriker (1992)
have devised a new set of basis functions
which well represents a galaxy obeying the
de Vaucouleurs R'/* law. Their basis set
will be useful for investigating spheroidal
systems like elliptical galaxies, because the
first few members of the basis set can re-

produce such systems.

Some tests of the SCF method about
systems in equilibriumn have been done
(Hernquist & Ostriker 1992).
the applicability to the dynamical evo-

However,

lution of stellar systems has never been
proved. Most of interesting problems are
concerned with the dynamical aspects of
stellar systems.

Therefore, it is indispensable to demon-
strate the accuracy of the SCF method for
the application to stellar dynamical prob-

lems.
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In spite of such advantages, SCF
methods have been used only sparingly in
applications to stellar dynamics. In large
measure, this may be due to the inflexi-
bility of this technique, in that the basis
set must be chosen so that the lowest or-
der terms are capable of reproducing the
global structure of the system under inves-
tigation.

Recently, HO proposed a new set of ba-
sis functions whose lowest order members
accurately describe galaxies obeying the
de Vaucouleurs R'* law in projection.
Their basis set will be useful, therefore, for
studying spheroidal objects like elliptical
galaxies.

Crude empirical tests of the SCF method
when applied to systems in equilibrium
were done by HO. However, the reliabil-
ity of this technique for simulating the
dynamical evolution of systems far from
equilibrium has never been proved.

Clearly, it is crucial to demonstrate that
the SCF method can handle such cases in
view of the fact that many interesting
problems involve, e.g. the evolution of sys-

tems towards equilibrium.
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Fortunately, there is another simulation
method which by no means depends on
softening length: it is a phase space
method that solves the collisionless Boltz-

mann equation directly.

As Fujiwara (1983) has demonstrated, the
method can precisely describe violent re-
laxation of stellar systems, although the
systems are exactly spherical symmetric.

Since collisionless Boltzmann simulations
are considered a limiting case of an infi-
nite number of particles, their results can
be used as a measure of the accuracy
of the SCF method which still has discrete-

ness noise.

In this paper, we compare the results
of collapse simulations between the two
methods and demonstrate the power of
the SCF method.
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Regorous proofs of the reliability of nu-
merical codes like the SCF method are
generally not feasible for highly non-linear
problems.

Fortunately, progress can be made by re-
lying on empirical tests in which different
techniques are applied to the same prob-
lem and comparing the results obtained
with them in detail, as was done by In-
agaki, Nishida, & Sellwood (1984) who
studied the non-linear evolution of thin
stellar disks.
systems, there is another approach which

For modeling collisionless

neither employs particles nor depends on
a softening length: phase-space methods
in which the collisionless Boltzmann equa-
tion is solved directly.

As Fujiwara (1983) has demonstrated, al-
though spherical symmetry is assumed,
this method can describe the violent relax-
ation of stellar systems accurately in the
sense that the results are not subject to
random fluctuations.

Since collisionless Boltzmann simulations
are a limiting case of a particle-based
scheme in which the particle number goes
to infinity, their results can be used
to measure the validity of the SCF
method when a finite number of particles
are used.

In this paper, we compare the results
of collapse simulations between the two
methods to study the reliability of the SCF
method although we are forced to ex-
amine spherical symmetric systems
owing to limitations of the computer
memory necessary for the phase-
space method.



7.4 CONCLUSIONS
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We have presented the collapse sim-
ulations of uniform-density spheres and
cooled Plummer models to demonstrate
the power of the SCF method.

It has been proved that the method can
give high accuracy for such simulations.

In particular, it can practically provide
the continuous limit obtained from the
collisionless Boltzmann simulations about
such information as density profiles and
velocity dispersion profiles.

In addition, if the large enough num-
ber of particles is used, the time evolution
of virial ratios can also be reproduced al-
most exactly.
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We have studied the collapse of uniform-
density spheres and cooled Plummer mod-
els to demonstrate the reliability of the
SCF method for modeling the dynamics
of collisionless systems initially far from

equilibrium.

We have shown that,
this approach can successfully reproduce

in principle,

the time-evolution of such a system,
when compared with results obtained
with a method which solves the collision-
less Boltzmann equation using a finite-
difference scheme.

With only a modest number of parti-
cles and basis terms, the SCF method
can practically attain the continuous limit
when predicting information such as
density profiles and velocity dispersion
profiles.

In addition, if a sufficiently large num-
ber of particles are used, more detailed
properties, such as the time evolution of
the virial ratio can be reproduced almost

exactly.
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The success of simulations with SCF
methods strongly depends on a basis set
chosen.

As shown in §4, the basis set should be se-
lected from the viewpoint where the den-
sity profiles in relaxed systems rather than
in initial systems can be well approxi-

mated.

One of the appropriate basis sets is that
given by Hernquist & Ostriker (1992)
which is based on a galaxy obeying the
de Vaucouleurs law because in usual col-
lapse simulations the density profiles in a
relaxed state end up R'/* law closely.

EIRE
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Hozumi

The success of simulations with the SCF
method depends on the basis set cho-
sen.

As suggested in §4, for collapse simula-
tions like those reported here, the ba-
sis set should probably be selected so that
the basis set gives an accurate description
of the final relaxed state, rather than the
initial conditions.

One example of such a basis set is that sug-
gested by HO, which is based on a galaxy
obeying the de Vaucouleurs law in projec-
tion. As is well-known, collapse simula-
tions typically produce end-states whose
density profiles are well-described by R/*

laws in projection.

Hernquist

Once a basis set is determined, the simu-
lation accuracy of SCF methods is gained
from the suitable choice of the maximum
numbers of expansion coefficients such as
Timax and Imax for a given particle number.
The degree of the reproduction in accelera-
tion is useful as a measure of accuracy.

255

Once a basis set is determined, the accu-
racy of the SCF method is determined
by a suitable choice of the maximum
number of expansion coefficients such as
Nmax and lmax, and the particle number.
Clearly, the appropriate choices of nmax,
Imax, and N are problem—dependent. Our
results in §3.2 suggest that even in some
extreme cases values of np,x in the range
10-30 are adequate to describe the evo-
lution of some non—equilibrium systems in
detail if hundreds of thousands of particles
are used.
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