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Abstract

The influence of central black holes on the dynamical evolution of bars in disk galaxies was examined.
Once a bar formed by a dynamical instability in an infinitesimally thin stellar disk was fully developed, a
black hole (BH) was adiabatically added at the center of the disk. Our results indicate that a bar can be
completely destroyed, in a practical sense, in a time much smaller than the Hubble time if the central BH
mass exceeds about 0.5% of the disk mass. Since this implied minimum BH mass for bar destruction is
on the order of 10%-° M, for a typical disk galaxy, this process could occur in the real Universe. The bar
amplitude decreases gradually with time after the BH has grown up to its full mass. Surface-of-section
plots indicate that the bar dissolution originates from the chaotic behavior of bar-supporting orbits. In
addition, the scale-length and the radial velocity dispersion of the disk after bar dissolution become much
larger than those of the initial axisymmetric disk. This finding suggests that it is possible to discriminate
between genuine non-barred galaxies and bar-dissolved galaxies induced by massive central BHs from the

viewpoint of structural properties.

Key words: black hole physics — galaxies: evolution — galaxies: kinematics and dynamics — galaxies:

structure — methods: n-body simulations

1. Introduction

Observations indicate that massive central black holes
exist in disk galaxies as well as in ellipticals. It is also
thought that the black hole masses are correlated with
host galaxy properties; Kormendy and Gebhardt (2001)
have concluded that the median black hole (BH) mass
fraction is 0.13% of the mass of the bulge, where the
term “bulge” is used for the hot spheroidal component
of a host galaxy. Consequently, extremely massive cen-
tral BHs are more frequently observed in elliptical and
SO galaxies than in normal spirals. For example, NGC
3115 (type S0), NGC 4649 (type E1), and M 87 (type
E0) are thought to harbor central BHs with masses
of 9.1 x 108 M, 2.0 x 10° My, and 3.4 x 10° M, respec-
tively, while NGC 4945 (type Scd), the Milky Way (type
SBbc), NGC 1068 (type Sb), NGC 4258 (type Sbc), M 31
(type Sb), and NGC 4594 (type Sa) are believed to con-
tain BHs with masses of 1.4 x 106 M, 1.8 x 106 My, 1.5 x
10"Mg,3.9 x 10" M,4.5 x 107 Mg, and 1.0 x 10° Mg, re-
spectively (see, e.g., Kormendy, Gebhardt 2001; Tremaine
et al. 2002; Marconi, Hunt 2003; and references therein).
It is thus plausible that most, if not all, large galaxies con-
tain central black holes whose masses range from ~ 106 M,
tO ~ 109'5M®.

Such a large mass concentration at the center of a
galaxy could affect the structure of the entire system.
Of great interest is the influence of a central BH on the

structure of a bar, in view of the fact that more than two-
thirds of all disk galaxies are barred if we include weakly
barred galaxies in addition to strongly barred galaxies
(Eskridge et al. 2000). Hasan and Norman (1990) and
Hasan, Pfenniger, and Norman (1993) have shown that
central mass concentrations can destroy a bar within a
short period of time based on the orbital motions of test
particles in fixed potentials of a disk, bar, and black hole.
Subsequently, Norman, Sellwood, and Hasan (1996) and
Shen and Sellwood (2004) have demonstrated that central
mass concentrations can also dissolve a self-consistent bar
by carrying out N-body simulations in which a bar is gen-
erated by the bar instability as a natural product of self-
gravitating disks, and a BH is added at the center of the
disk as an external field. From their self-consistent simula-
tions, Norman et al. (1996) have concluded that a central
massive object with about 5% of the total mass of a disk
plus bulge can result in the dissolution of a bar within
the Hubble time. Likewise, Shen and Sellwood (2004)
obtained about 4-5% of the disk mass as a minimum BH
mass necessary for bar dissolution. Although these results
are intriguing, the implied mass for bar destruction be-
comes about 10%° M, when scaled to a typical disk galaxy
with a mass of ~ 10195-10"' M. Consequently, the re-
quired BH mass is greater than that inferred in nearby
spirals, and is comparable to the largest BH masses de-
rived observationally in ellipticals.

It follows from the argument mentioned above that
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bar destruction by massive central black holes might
not practically occur in the real Universe. However,
the conclusions of Norman et al. (1996) and Shen and
Sellwood (2004) have been reached by employing Kuzmin—
Toomre disks (Kuzmin 1956; Toomre 1963), which dif-
fer from the mass profiles of real disk galaxies, which
are well-represented by exponential surface density pro-
files (Freeman 1970). Since exponential disks are more
centrally concentrated than Kuzmin—Toomre disks, cen-
tral BHs may have a more serious effect on exponential
disks than on Kuzmin—Toomre disks. Thus, the minimum
BH mass could be smaller than that obtained by Norman
et al. (1996) and that by Shen and Sellwood (2004).
Therefore, it is important to determine how massive a
BH is required to destroy a bar for realistic disk models.
In fact, our results for exponential disks will demonstrate
that in some cases the BH mass necessary for bar de-
struction may be at least a factor of ten smaller than that
suggested by the work of those authors noted above. This
implies that a bar could be dissolved in reality, so it is
also important to study the structural properties of bar-
dissolved galaxies in order to observationally discriminate
them from a priori non-barred galaxies.

In this paper, we examine the influence of a central
black hole on a bar generated by the bar instability, and
show that the BH mass necessary for bar destruction
could be within the largest BH masses observed in nearby
spirals. Then, we study what structural properties bar-
dissolved galaxies have, and describe ways of discriminat-
ing between bar-dissolved galaxies and genuine non-barred
galaxies. In section 2, we present the initial setup of our
models and the numerical method. Results are given in
section 3. In section 4, we discuss the BH mass required
for bar dissolution, and the structural characteristics of
bar-dissolved galaxies, together with the mechanism of bar
dissolution studied here. Conclusions are given in section

5.
2. Models and Method

In the calculations described here, we study the evolu-
tion of razor-thin disks without bulges and halos. Since
the surface density profile of disk galaxies is well-described
by an exponential law (Freeman 1970), we adopt exponen-
tial disks whose surface density distributions, u, are given
by

p(R) = poexp(—R/h), (1)

where h is the scale-length, R is the distance from the cen-
ter of the disk, and pyg is the surface density at the center.
The disks are truncated at R = 10h. The full phase-space
is realized by employing the approach of Hernquist (1993),
who approximated the velocity distribution using mo-
ments of the collisionless Boltzmann equation. The shape
of the velocity ellipsoid in this approach is based on obser-
vations (van der Kruit, Searle 1981; Lewis, Freeman 1989)
such that the square of the radial velocity dispersion, 0.2,
is proportional to the surface density, and so, o2 is also
given by an exponential law,
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where oy is the radial velocity dispersion at the center. We
choose parameters such that the typical Toomre (1964)
() parameter is about 1.3, and the models are globally
unstable to the formation of bars.

For simplicity, the black holes are handled as exter-
nal fields, and their potentials, ¢py, are represented by
a softened point-mass using a spline-kernel (Hernquist,
Katz 1989), given by

¢Bu(R) = —GM.(t)f(R), 3)

where G is the gravitational constant, and M,(t) is the
BH mass at time ¢. The function f(R) is expressed by

—(2/esn) [(1/3)u? — (3/20)u*

+(1/20)u®]+7/(5€pn) , 2§u< 1,
) —1/(15R) — (1/egn) [(4/3)u? —
fm=q 7 +(3/10)u4/—B(}IIl /EO)/US]U ! )
+8/(5€BH), 1<u<2,
1/R, u>2,

where u = R/epy, and epy is the scale-length of the BH
potential. As an advantage of this form, we can represent
BHs as being close to a point mass by choosing egy as
small as possible, because equation (4) shows that such
a spline-softened potential reduces to a pure Newtonian
potential when the distance from the center is larger than
2€BH.

The BH is added at t =tgu, long after the bar instability
has occurred, and its mass grows slowly from 0 to Mgy
as follows:

M, (t) = {

where 7 = (t —tH)/tgrow, and tgrow is the time for the BH
to grow to its full amplitude Mgu. Thus, the BH is made
to grow adiabatically by taking tg.ow to be sufficiently
long. In our dimensionless system of units, described be-
low, tgr is set to be 100, and tgow is chosen to be 50
(see appendix 1). Here, we consider cases with Mgy /M =
0.001, 0.002, 0.003, 0.005, 0.007, and 0.01, where M is
the total mass of the disk. For these BH masses, we
use egy = 0.01h unless otherwise specified. This value
of egg may be compared with a radius of Rgy within
which the disk mass is equal to the full BH mass Mpy.
Obviously, Ry increases monotonically with increasing
MBH- For example, RBH/h = 0.045 for MBH/M = 0.001,
and Rpu/h=0.10 for Mg /M =0.005. Consequently, egn
is at least one-tenth of Rgy for Mpu/M > 0.005, and it is
still less than one-fourth of Rpy, even for Mpu/M =0.001.
Thus, our choice of egy is sufficiently small to model BHs
as point masses. An example of the effect of egg on the
evolution of the bar amplitude is shown in appendix 2.
Once the disks have been realized with particles,
we evolve them forward in time using a self-consistent
field (SCF) method, as termed by Hernquist and
Ostriker (1992), for which no explicit softening of grav-
itational forces is needed. (We note, however, that these
codes are still subject to two-body relaxation owing to

MBHT2(3 — 27’),
MzH,

0<7<1,
7';1,_ (3)
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discreteness effects, as shown by Hernquist and Barnes
1990.) In the SCF code, we adopt Aoki and Iye’s (1978)
basis set, which is appropriate for systems that are flat
and have no vertical extent. In a dimensionless system of
units, the density basis functions, f,.,,, and the potential
basis functions, ®,,,,, are expressed, respectively, by

N\ 3/2
(B =252 (155) " Pan(©@explime)  (0)
and
N 1/2
bun®) == (55) " Pn@ewlimd). (@)

where R = (R,6) is the position vector, the P,,, are
Legendre functions, and n and m (n > m) are the ra-
dial and azimuthal “quantum numbers”, respectively. In
particular, positive values of m correspond to the number
of arms in spiral patterns. In equations (6) and (7), the
radial transformation

R*—1
TR ®

is used. With these basis functions (fnm,®nm), each pair
of which satisfies Poisson’s equation, the density and po-
tential of the system can be expanded, respectively, as

p(R) =" Anm (t)ptrim (R) 9)

and

®(R) = Aum ()P (R). (10)

The simulation procedure using an SCF method is
described by Hernquist and Ostriker (1992) and by
Hozumi (1997).

The amplitude of the (n, m)-mode at time ¢ is calcu-
lated from the absolute value of the expansion coefficients,
|Anm (t)]. If a spatially constant shape, like a bar pattern,
emerges in a model disk, A,,,(t) will be proportional to
exp(—iwt), where w is the complex eigenfrequency, and
Im(w) will be almost zero in a nonlinear regime. Thus,
the pattern speed for the (n,m)-mode is obtained from
Re(w)/m. In evaluating bar amplitudes, we pay atten-
tion only to the fastest growing mode with (n,m) = (2,2),
because it will finally dominate the disk by overwhelm-
ing other modes in a linear regime. Accordingly, we use
| 425 (t)| to measure the bar amplitude at time ¢.

We employ N = 131072 particles of equal mass. The
equations of motion are integrated in Cartesian coor-
dinates using a time-centered leapfrog algorithm (e.g.,
Press et al. 1986). A system of units is taken such that
G =M = h =1. If these units are scaled to physical
values appropriate for the Milky Way, i.e., h = 3.5 kpc
and M = 5.6 x 10'° M, the units of time and velocity are
1.31 x 107 yr and 262 km s, respectively.

In SCF simulations, the maximum numbers of radial
and azimuthal expansion coefficients, nyax and mpmax,
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must be specified. It is desirable to include as many ex-
pansion terms as possible to trace the evolution of small-
scale structures. Then, we choose mmax = 12, for which
only even m-values are used to avoid an appreciable dif-
ference between the center of the bar and the position of
the BH owing to asymmetric features that would originate
from odd-armed modes. For this value of mpyayx, we adopt
Nmax = 24 from convergence tests for determining mmax.-
Some test experiments with larger nmax and mmax were
found to give very similar results.

We first run a simulation until a bar has developed fully
in the disk, and then continue the evolution, after grow-
ing a BH according to equation (5). We use a time step
At=0.05 when there is no BH. At time tgg = 100 when the
bar has reached a nearly steady state, we add a BH at the
center of the disk. After tgy = 100, we employ At = 0.01
for the model with Mgy = 0.001, and At = 0.005 for the
rest of the models. These choices of time step were de-
termined by performing simulations with different values
of At and requiring that the results of the integrations no
longer depended on At. For these time steps chosen, the
total energy of the system after the full growth of the BH
was, in all cases, conserved to better than four significant
figures.

3. Results

3.1.  Ewvolution of Bars

In figure 1, we show the time evolution of the density
distributions after the BH is added at the center of the
disk for Mgy = 0,0.001,0.003,0.005, and 0.01. From this
figure, we can see that the bar shape remains practically
unchanged to the end of the run for Mgy =0.001, although
the bar pattern speed is affected to some degree, as is
apparent from comparing the direction of the bar major
axes at corresponding times between this model and that
without a black hole. Once the BH mass exceeds 0.3% of
the disk mass, the bar shape becomes rounder with time;
for Mgy = 0.003, the bar has finally become round in a
large measure, but it appears still slightly elongated at
t = 400, while for Mgy = 0.005 and Mgy = 0.01, the bar
has been almost completely destroyed at ¢ = 400. This
behavior of the bar shape for BH masses is illustrated
clearly in figure 2, which shows the axis ratio of the bars
at the end of the simulations as a function of radius, along
with the axis ratio profile of the bar at ¢ = 100. Here, we
determined the axis ratios of the bars by calculating the
principal moment of inertia tensor for particles included in
a specified radius, and used this information to derive the
axis ratio at that radius. We are reassured from figure 2
that BHs whose masses are at least larger than 0.005 can
destroy the bar by the end of the simulations, because
the axis ratios of these bars are roughly larger than 0.9
at all radii, while a BH with Mgy = 0.003 can make the
bar rounder but it cannot eliminate the bar thoroughly by
t =400.

Next, we also notice from figure 1 that the deforma-
tion of the bar into a rounder shape proceeds gradually
with time. To be more specific about the change in bar
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Fig. 1. Time evolution of the density contours in barred structures after the addition of black holes with Mgy = 0, 0.001, 0.003,
0.005, and 0.01. The contours are drawn at the 90, 80, 70, ---, and 20% levels of the peak amplitude on logarithmic scales. Black
hole growth commenced at t = 100, and was completed at ¢ = 150. The bar patterns rotate counterclockwise.

strength, the time evolution of the bar amplitude for each
BH mass is shown in figure 3. This figure demonstrates
that after the BH grows to its full mass (¢ > 150), the
bar amplitude decreases nearly exponentially with time,
and that the rate at which the bar amplitude decays in-
creases with increasing BH mass. In particular, it is to
be noticed that only slight as it is, even the bar ampli-
tude for My = 0.001 decreases at a higher rate than
that for the model without a BH. As an example, figure
4 presents the time evolution of the bar axis ratio profile
for Mgy = 0.005, and shows that the axis ratio at each
radius increases mildly in the bar region as time proceeds.
Thus, the bar is made gradually rounder with time by a
massive central BH.

As found from figure 3, the amplitude of the bar decays
nearly exponentially with time, ~ exp(—t/7gecay), once
the BH is fully developed. From the decline of ln|Ass|

with time, we can estimate decay times as e-folding times,
Tdecay- In the computation of Tgecay, the period from
t = 350 to t =400 was used. Then, these e-folding times
are plotted against Mpy in figure 5, in which the unit
time is converted to gigayears by adjusting the physical
values to those of the Milky Way. This figure indicates
that the decay time scales for Mpy 2 0.002 are smaller
than the inferred ages of disk galaxies. Therefore, we ex-
pect that a black hole with a mass as small as 0.2% of the
disk mass could substantially deform a bar into an almost
round shape, and in some cases, could dissolve a bar, pro-
vided that the bar formed at around the same time as the
disk. However, in reality, the exponential decay in the bar
amplitude might not continue until the present time, so
that the required lower bound of the BH mass could be
higher than 0.2% of the disk mass.

For the results described above, the scale-length of the
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Fig. 2. Axis ratios of bars as a function of radius at the end
of the simulations (¢ = 400) for each black hole mass model.
In the case without a black hole, the axis ratios are calculated
at t = 100 just before the addition of a black hole.
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Fig. 3. Time evolution of the bar amplitude, |Aa2|, for each
black hole mass model, along with the model without a black
hole. A black hole was added at t = 100, and was fully devel-
oped at t = 150.
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Fig. 4. Time evolution of bar axis ratios as a function of
radius for Mgy = 0.005. Black hole growth began at ¢t = 100
and was completed at ¢t = 150.
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Fig. 5. Decay time scale of the bar amplitude as a function
of black hole mass, provided that the bar amplitude is propor-
tional to exp(—t/Tgecay) after the full growth of a black hole.
The decay time scales are estimated from the change in bar
amplitude between ¢ =350 and t =400, and they are converted
to the physical times on the basis of the values appropriate
for the Milky Way.

BHs is egg = 0.01, that is, 35 pc when converted to phys-
ical units. In real barred galaxies, sufficiently dense con-
centrations of gas with masses of 107-10°M, are often
found in central regions (Sakamoto et al. 1999; Regan et
al. 2001). Then, we examined the influence of such mass
concentrations by selecting egy = 0.03, that is, ~ 100 pc, a
likely smallest size for them. The mass of a concentration
corresponding to Mpy is taken to be 0.005. The param-
eters necessary for the simulation are the same as those
employed for the case with Mpy = 0.005 except for epy.
From the results shown in figure 6, we find that a dense
central concentration with a mass 0.5% of the disk mass
can make a bar rounder and can reduce the bar ampli-
tude to a certain degree, but that the bar still survives
until the end of the run. Indeed, we have obtained about
1.14 x 10'° yr as an e-folding decay time scale in this case.

3.2.  Structural Properties of Bar-Dissolved Galazies

In figure 7, we show the final surface density profiles of
the models for which the bar has been made significantly
round, that is, for Mgy = 0.005, 0.007, and 0.01, together
with those of the disk at t =0 and ¢ = 100. Since the
bar-dissolved models are not perfectly axisymmetric even
at the end of the simulations (see figure 2), all the sur-
face density profiles are constructed along the major axis
by selecting the particles whose positions are involved in
a small angle from the origin with respect to the major
axis. The initial exponential surface density distribution
is converted to a more centrally concentrated one by the
bar instability. In particular, the steep rise of the surface
density is prominent in the region R < 2. From a com-
parison between the density contours in figure 1 and the
surface density profiles in figure 7, we find that R ~ 2 cor-
responds to around the end of the bar along the major
axis. The introduction of a BH at the center of the disk
does not change the surface density distribution within
the bar region, R < 2, substantially from that at ¢ = 100,
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Fig. 6. Density contour (a), axis ratio profile (b), at the end
of the run, ¢ = 400, and time evolution of the bar amplitude
(c), for Mgy = 0.005 with egy = 0.03. In this instance, Mgy
can be considered to be the mass of a dense central concen-
tration. As a comparison, the following cases are also shown:
(b) the axis ratio profiles for Mgy = 0.005 with egy = 0.01 at
t =400 and for a model without a black hole at t = 100, and
(c) the time evolution of the bar amplitudes for Mg = 0.005
with egg = 0.01 and for a model without a black hole.
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Fig. 7. Surface density profiles at the end of the runs, t =400,
for the bar-dissolved models. The lines denoted by ¢t = 0 and
t = 100 show the surface density profile of the initial model,
and that just before adding a black hole, respectively.
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Fig. 8. Radial velocity dispersion profiles at the end of the
runs, t = 400, for the bar-dissolved models. The lines denoted
by t =0 and ¢ =100 show the radial velocity dispersion profile
of the initial model, and that just before adding a black hole,
respectively.

regardless of the BH mass, although the surface density
becomes very high at very small radii owing to the pres-
ence of the BH. When we neglect a slight difference in the
surface density distributions at t =400 for these three BH
masses, we can still roughly fit them with an exponential
law outside R ~ 3.

In figure 8, we show the final radial velocity dispersion
profiles of the models with Mgy = 0.005,0.007, and 0.01,
together with those of the disk at the beginning and at
t =100. Here, o, is calculated along the major axis, as is
done for the surface density. This figure indicates that be-
cause of the bar instability, o, increases greatly from ¢t =0
to t = 100, except in the region around R ~ 2, while the
final distributions of o, are very similar to one another,
irrespective of the BH masses. Like the surface density
profiles, the existence of the bar produces a bend in o, at
around the end of the bar, R ~ 2, inside which o, rises
steeply down to the center. However, the subsequent evo-
lution after the addition of a BH ends up with only a slight
increase in o, at all radii, although the increase in o, is
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rather large at very small radii where the BH dominates
the motions of stars. This means that the bar dissolu-
tion process hardly heats the disk, as compared to the
bar instability. As found from figure 8, the o, distribu-
tion of the disk that has suffered the bar instability shows
an exponential profile at R 2 4. Therefore, no practical
change in the o, distribution through the process of bar
dissolution implies that the o, distributions of the bar-
dissolved galaxies are also represented by an exponential
law at corresponding radii.

Assuming that both the surface density and radial ve-
locity dispersion profiles can be approximated by exponen-
tial laws at R 4, we can obtain a relation between the two
quantities. As can be seen from figures 7 and 8, the differ-
ence in the surface density, u, and the radial velocity dis-
persion, o, among the BH models is very small from R~ 4
to R ~ 10. We find that in this region, u o< exp(—0.24R)
and 0, xexp(—0.12R). Consequently, 0,2 is proportional
to p0-2, unlike the relation for our Galaxy in which o2 oc
holds (van der Kruit, Searle 1981; Lewis, Freeman 1989).
In particular, we see that the exponential scale-length of
the bar-dissolved disks becomes about four-times as large
as that of the initial disk.

3.8.  Surfaces of Section

Surfaces of section (SOSs) will give a clue to the bar
dissolution mechanism. We construct SOSs in a frame
rotating with a bar pattern speed, (1, in which the bar
is placed so that its major axis is aligned with the z-
axis. For a given value of the Jacobi constant H, orbits
are computed for stars starting on the y-axis with § =0
by numerically integrating the equations of motion. In
so doing, we use the expansion coefficients Ay, (t) of the
SCF simulations in order to obtain accelerations at each
position of a star. Then, SOSs are built up by saving (y,9)
values every time the star crosses the bar minor axis with
% < 0. It thus follows that the right-hand side of the SOS
plots represents crossings in the prograde sense, while the
left-hand side corresponds to those in the retrograde sense.

Figures 9 and 10 show the evolution of SOSs for six
values of the Jacobi constant for Mg = 0 and those for
Mgy = 0.005, respectively. In figure 9a, we plot the SOSs
for the disk, which has suffered the bar instability, at t =
100 just before adding a BH. These SOSs have evolved
through those at ¢t = 150 (figure 9b) into those at ¢t =400
(figure 9¢). When a BH with Mgy = 0.005 is added at
t =100, the SOSs at t =100 (figure 10a) have turned into
those at t = 150 when the BH has grown up completely
(figure 10b), and they have resulted in those at t = 400
(figure 10c). Here, notice that the SOSs in figure 10a are
exactly identical to those in figure 9a. For a given value
of H, a particle can reach the limiting distance y¢ on the
bar minor axis. Following Norman et al. (1996), we denote
this value of H by H(0,yo)-

At t =100 when there is no black hole, we find, as nested
invariant curves, the B family of direct orbits (x; orbits)
on the right-hand side of the SOS plots shown in figure
9a. The orbits of this family are the loop orbits that are
believed to sustain bars. The subsequent evolution of the
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bar without the influence of a BH does not change the
basic properties of SOS plots. Figures 9b and 9c¢ demon-
strate that nested invariant curves are still maintained.
As often discussed in the literature (Hasan, Norman 1990;
Norman et al. 1996; Shen, Sellwood 2004), the retrograde
orbits represented by the invariant curves on the left-hand
side of the SOS plots are insignificant for supporting bars
owing to the low population of stars.

The addition of a black hole changes SOSs, as found
from figures 10b and 10c. The black hole can make
some orbits of the major family stochastic, so that the
outer invariant curves of the major family disappear.
Consequently, the SOSs are occupied by stars whose or-
bits are determined by the energy integral H alone. As
the value of H becomes smaller, stochastic regions pre-
vail more and more in the SOSs. The evolution of the
SOSs shown in figure 10 is quite similar to that presented
in figure 11 of Shen and Sellwood (2004), although they
constructed SOSs by projecting three-dimensional orbits
onto the mid-plane of the disk: many bar-supporting or-
bits become chaotic during the phase of the BH growth as
seen from figure 10b, and subsequently, the secular settle-
ment of the global potential of the system allows x; orbits
to exist again because the bar has been removed incom-
pletely as found from figure 4. This behavior in the SOS
plots suggests that the decay in the bar amplitude and, in
some cases, the bar dissolution are caused by a decrease
in the population of bar-supporting orbits owing to chaos
induced by the presence of a black hole.

4. Discussion

We have shown that a massive central BH can dissolve
a bar within a relatively short time scale if the BH is
as massive as about 0.5% of the disk mass. This finding
indicates that the minimum BH mass required for bar dis-
solution would be on the order of 108-5M, for a typical
disk galaxy. Furthermore, we have also shown that even
a BH with 0.3% of the disk mass can deform a bar into
a round shape in a short period of time. Our minimum
BH mass is close to the largest BH masses inferred in
nearby spiral galaxies, but not abnormally large, and still
within the range of the estimated BH masses from obser-
vations (Kormendy, Gebhardt 2001; Tremaine et al. 2002;
Marconi, Hunt 2003). In fact, the Sa galaxy NGC 4594 is
thought to contain a central BH with a mass of ~ 10° M,
(Kormendy 1988; Marconi, Hunt 2003). Therefore, al-
though this bar dissolution cannot be a frequent event, it
could occur in the real Universe, and some fraction of bars
in real barred galaxies could be made rounder to some ex-
tent in the course of the Hubble time, even if they are not
completely dissolved.

Our minimum BH mass necessary for bar dissolution
is about an order of magnitude smaller than that ob-
tained by Norman et al. (1996) and that by Shen and
Sellwood (2004). Our simulations differ from these in sev-
eral respects, and we do not know which difference is most
responsible for our lower value of this BH mass. The way
of modeling a BH is indeed different between Norman et
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(8) Mgy =0 (t=100) (b) Mgy =0 (t=150) (C) Mgy =0 (t=400)

L H(0,0.3)=-1.2096 L H(0,0.3)=-1.2109 L H(0,0.3)=-1.2422

H(0,0.4)=

-1.0786

Fig. 9. Surfaces of section (SOS) for six selected values of the Jacobi constant, H(0,yo), without a black hole, for which a particle

can reach the limiting distance, yo, on the bar minor axis. Shown are (a) SOSs at t =100, (b) SOSs at ¢ = 150, and (c) SOSs at
t = 400.
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(& Mg, = 0.0 (t=100) (b) Mgy, = 0.005 (t=150) () Mgy = 0.005 (t=400)
H(0,0.3)=-1.2096 H(0,0.3)=-1.2691 H(0,0.3)=-1.3535

H(0,0.6)=-0.8925

X

. -1. 18 L
-0.8 0 0.8 18 0 0.8 0.8 3 0.8

Fig. 10. Same as in figure 9 but in the case of a BH with Mgy = 0.005 (a) at ¢ = 100 just when the BH growth has commenced,
(b) at t = 150 just when the BH growth has been completed, and (c) at t = 400. Notice that the SOS plots at ¢ = 100 are exactly
identical to those for the model without a BH in figure 9.
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al.’s (1996) simulations and ours, while ours is similar to
that in Shen and Sellwood’s (2004) simulations. This
suggests that the difference in the minimum BH mass
does not originate primarily from the difference in the
BH model. It is conceivable that the important difference
arises from the disk models: Norman et al. (1996) and
Shen and Sellwood (2004) adopted Kuzmin—Toomre disks,
while we have employed exponential disks. The latter are
significantly more centrally concentrated than the former.
As a result, it is likely that a relatively larger fraction of
the stars supporting the bars in our simulations pass suffi-
ciently near that central mass to be strongly perturbed by
it. Therefore, the impact of a central BH is considered to
be stronger in exponential disks than in Kuzmin—-Toomre
disks. This reasoning is supported by the finding of Shen
and Sellwood (2004) that after the orbits sustaining a bar
with lower energies are made chaotic, those with higher
energies follow (see the discussion of the mechanism be-
low). Of course, we should compare the density distribu-
tions of bars rather than those of disks to estimate the
true influence of a BH. Nevertheless, it is quite likely that
more centrally concentrated bars could be formed in more
centrally concentrated disks by the bar instability.

Very recently, in relation to the efficient destruction
of bars in exponential disks argued above, Athanassoula,
Lambert, and Dehnen (2005) investigated bar destruc-
tion due to central mass concentrations by employing
exponential disks in surface density with live halos in
three-dimensional configurations. In their simulations,
the galaxy models were divided into two types: one had
a small core halo that was more massive in the central
parts, and thus denoted as MH-type; the other had a
large core halo that was less massive in the central parts,
and thus termed MD-type, which stands for massive disk
type (also see Athanassoula and Misiriotis 2002). They
then demonstrated that the minimum BH mass neces-
sary for bar destruction is at least about 5% of the disk
mass, and that the BH mass required for bar destruction
is smaller for MD-type models than for MH-type models.
Although they adopted exponential disks, their minimum
BH mass was about an order of magnitude larger than
that found by us. They infer that our adopted time step
could be rather large, perhaps enough to result in a spu-
riously damaging effect on the bar. In this regard, we
carried out an additional simulation (not presented here)
for Mgy = 0.01 with At =0.001, and found that the evo-
lution of the bar amplitude is very similar to that shown
in figure 3. If we are allowed to extrapolate their results
despite the fact that we used a two-dimensional disk, our
disk model, which has no halo component, would corre-
spond to a limiting case of their MD-type models, and
80, the minimum BH mass could be smaller than that
obtained by them. Unfortunately, we cannot evaluate to
what degree the BH mass is reduced for pure disk models
at this stage. In addition, there are some other differ-
ences between their simulations and ours, except for the
geometry (their simulations are three-dimensional, while
ours are two-dimensional), so that the exact reason for
the difference in the minimum BH mass should be further
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investigated. As suggested in their paper, the orbital con-
tents of the bars used in both simulations could give us
a clue to the degree of robustness or fragility of the bars
under the influence of massive central BHs.

In figure 5, we have shown that the e-folding decay time
of the bar amplitude, Tgecay, decreases with increasing BH
mass. We infer that 7gecay asymptotes to zero as Mgy ap-
proaches infinity, and that Tgecay goes to infinity as Mpn
approaches zero. Therefore, the relation between 7qecay
and Mgy will be represented by Tgecay < Mpu”, where
« is negative. A least-squares fit to our results gives
o= —0.71, which roughly suggests that Tqecay is inversely
proportional to Mpu. However, this value of a will de-
pend on the disk structure such as density and velocity
distributions.

We may be underestimating the response of a bar by
softening the potential of the BH and by forcing it to re-
main stationary at the center of the disk. In reality, a
BH near the center of a galaxy would generate a potential
that is essentially that of a point mass, and would “wan-
der” about the origin as it achieves equipartition with the
background stars (Quinlan, Hernquist 1997; Chatterjee et
al. 2002a, b), possibly enhancing the rate at which a bar
would be destroyed. Taking into account this black hole
“wandering”, the minimum BH mass might be further re-
duced. (Note that the BH wandering is caused by the
same discreteness effect that produces relaxation in SCF
codes.) In addition, we hold the softening length fixed
as we vary the black hole mass, for simplicity. Since this
way of modeling black holes means that BHs with smaller
masses are softened more loosely, the impact of a BH upon
destroying a bar is considered to be weaker for smaller BH
masses. In appendix 2, we have demonstrated that the bar
amplitude can be lowered more effectively by halving the
softening length, egy, of a BH with Mgy =0.001, although
the decay time scale for egg = 0.005 is comparable to that
for egg = 0.01. This result indicates that we do not cap-
ture all of those large-angle scatterings by the black hole
which would exist if it were a point mass. In this sense, the
minimum BH mass that we have obtained here is an upper
bound for bar destruction, because we underestimate the
effect of small black holes, although the degree of missing
such large-angle scatterings is not so high for that small
BH mass, as also shown in appendix 2. Therefore, this
fact only strengthens our conclusion that relatively small
black holes can affect bars.

From an observational point of view, Das et al. (2003)
have obtained an inverse correlation between bar ellip-
ticity and central mass concentration. On the basis of
this correlation, they suggest that the mass concentra-
tion may eventually dissolve a bar. Since their definition
of mass concentration is the ratio of the dynamical mass
within the bulge to that within the bar radius, the cor-
relation that they have found may not be direct evidence
for the occurrence of bar dissolution caused by dense con-
centrations of gas in the central regions of disk galaxies.
In addition, in our case where the scale-length of a mass
concentration corresponds to about 100 pc, a bar cannot
be destroyed, even though the mass of the concentration
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amounts to about 10%® M. Similar results are shown by
Shen and Sellwood (2004) with an extensive study of the
compactness of central mass concentrations. Therefore,
the correlation obtained by Das et al. (2003) may be a
manifestation of a variety of the bars formed by the bar
instability that is affected by bulges with a wide range of
the mass and scale-length.

Very recent observations indicate that the bar frac-
tion is constant out to a redshift of z ~ 1 (Sheth et
al. 2003; Elmegreen et al. 2004; Jogee et al. 2004). Then,
Elmegreen et al. (2004) have concluded that most bars
do not dissolve within the Hubble time. Their conclu-
sion is not necessarily inconsistent with our results, as we
have stated that bar dissolution can occur rarely in the
history of the Universe. However, if some galaxies ex-
perience bar dissolution, we could discriminate between
a priori non-barred galaxies and bar-dissolved galaxies
from the viewpoint of structural properties such as sur-
face density and radial velocity dispersion. Although bar-
dissolved galaxies show an exponential profile in surface
density, their exponential scale-length would be substan-
tially, say about four times, larger than those of non-
barred galaxies by birth. This means that the scale-
length of bar-dissolved galaxies could amount to about
14 kpc. In addition, we have found that the bar disso-
lution process does not practically heat the disk. As a
result, the distribution of o,2 for bar-dissolved galaxies is
determined by the bar instability, and shows shallower de-
pendence on p, like 0,2 oc %%, than that for our Galaxy,
in which 0,2 o< p holds (van der Kruit, Searle 1981; Lewis,
Freeman 1989). Thus, the bar-dissolved disks would have
a large o, at large distances as shown in figure 8. Taking
into account these characteristics of bar-dissolved galax-
ies, we should mention some simulations in which bar dis-
solution is driven by dense central mass concentrations
(Friedli, Benz 1993; Berentzen et al. 1998; Bournaud,
Combes 2002). As we have already argued, this kind
of bar dissolution might be implausible in reality. Even
though such a phenomenon could be realized, the end-
products would not look like genuine non-barred galaxies
because of their large exponential scale-lengths and large
radial velocity dispersion distributions.

Previous studies (Hasan, Norman 1990; Hasan et
al. 1993; Norman et al. 1996; Shen, Sellwood 2004) have
revealed from SOS plots that after the introduction of a
BH, a large fraction of the loop orbits that probably sup-
port a bar become chaotic. In our cases, similar SOS plots
have been obtained as presented in figure 10. Thus, we
can rely on a picture that the bar dissolution studied here
originates from that chaotic behavior in bar-supporting
orbits which is excited by the growth of a central BH.
Consequently, the disappearance of these loop orbits pro-
motes the erosion of a bar. In the process of bar dissolu-
tion, Norman et al. (1996) found that the bar amplitude
decreased suddenly after the full growth of a BH, and ar-
gued that the interpretation based on chaotic behavior in
orbits accounts for this abrupt destruction of a bar. On
the other hand, our results indicate that even though the
origin is chaos, a bar dissolves gradually with time. This

Evolution of Barred Galaxies with Massive BHs 11

difference in the rate of dissolving a bar might be caused
by the difference in the way of introducing a BH: Norman
et al. (1996) reduced the scale-length of a central mass
concentration to finally build up a BH, while we allowed
the BH mass to grow adiabatically.

We have considered only infinitesimally thin disks. This
restriction could enhance the influence of a BH on the disk
by requiring the orbits of stars to remain in a single plane.
However, for now we note that Norman et al. (1996) mod-
eled disks both with and without vertical extent, and did
not find a significant difference in the magnitudes of the
central mass concentrations required for destroying a bar.
Rather, by focusing on two-dimensional disks, we can eval-
uate, in a sense, the impact of a central BH on a bar alone,
because the adoption of three-dimensional disks would
lead to a fire-hose instability, which affects their verti-
cal structure and can destroy a bar in some cases (Raha
et al. 1991; Debattista et al. 2004; Martinez-Valpuesta,
Shlosman 2004).

Conventional N-body methods need the explicit intro-
duction of a softening length, which often casts doubt
on how faithful N-body simulation results are to real-
ity. In particular, for cold systems like those galaxy disks
studied here in which rotation is dominant, the modifi-
cation of force fields through a softening length could al-
ter the global dynamics of a disk to a large degree. In
fact, Earn and Sellwood (1995) have demonstrated that
for an isochrone disk, the growth rate and pattern speed
of the fastest growing two-armed mode obtained with their
smallest softening length are still about 20% smaller than
those derived from linear analysis. On the other hand,
if an SCF method is used, the growth rate and pattern
speed are in excellent agreement with those predicted by
linear theory. In our simulations, we have avoided com-
plications arising from a softening length by adopting an
SCF method, so that the estimated minimum BH mass
will be close to that which is actually needed to destroy a
bar.

5. Conclusions

We examined the damaging impact of massive central
BHs on bars formed in two-dimensional exponential disks
using N-body simulations. We found that a bar can be
completely destroyed in a time much smaller than the
Hubble time if the central BH exceeds about 0.5% of the
disk mass. This minimum BH mass is on the order of
108-5My, for a typical disk galaxy, and so, it is not ex-
tremely large as compared with the BH masses suggested
by observations. Therefore, the bar dissolution induced
by a massive central BH could occur at some unexcep-
tional rate in real barred galaxies. We also found that a
bar can be seriously damaged in the Hubble time if the
central BH is around 0.3% of the disk mass. Thus, we
expect that some fraction of bars in real barred galaxies
would have been made round by a central BH. On the
other hand, our additional simulation has exemplified the
insufficiency for bar destruction caused by dense central
mass concentrations because of their extended distribu-
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Fig. 11. Time evolution of the bar amplitude, |A22|, after
the addition of a black hole with Mgy = 0.01 when the grow-
ing time of the black hole mass, tgrow, is varied.

tions, even though their masses amount to the minimum
BH mass derived here.

We have demonstrated that bar-dissolved galaxies have
a large exponential scale-length in surface density and
a large radial velocity dispersion profile, although the
bar dissolution process hardly heats the disk. In addi-
tion, we have shown that the resulting surface density
and radial velocity dispersion profiles are related to each
other as 0.2 o« u!/? unlike the relation for our Galaxy
0.2 oc p. We thus suggest that these structural proper-
ties could be used to discriminate observationally between
bar-dissolved galaxies and a priori non-barred galaxies.

Regarding the mechanism of the bar dissolution studied
here, the surface-of-section plots strongly indicate that it
originates from the conversion of loop orbits into stochas-
tic orbits owing to the influence of a central BH. We have
found that the chaotic origin of bar dissolution leads to
a gradual erosion of a bar unlike the view that chaos is
responsible for a sudden destruction of a bar.
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discussions. We thank Dr. C. Efthymiopoulos for valuable
communications concerning the construction of surfaces of
section. Thanks are also due to Professor E. Athanassoula
for useful discussions on bar dissolution, and to Dr. R.
Jesseit for his critical reading of the original manuscript.
We appreciate helpful comments by the anonymous ref-
eree. One of the authors (SH) acknowledges University
of California, Santa Cruz, and Max-Planck-Institut fiir
Astronomie, Heidelberg for their hospitality, where part
of this work was done.

Appendix 1. Growing Time of a Black Hole

We examine how long the growth time of a black hole,
tgrow, should be to ensure adiabaticity. Figure 11 presents
the time evolution of the bar amplitude after the addition
of a BH with Mgr = 0.01 for tgrow = 25,50, and 75. Other
simulation parameters are the same as those described in
section 2. We can see that these choices of tgrow result in
a similar evolution of the bar amplitude after the BH has
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Fig. 12. Time evolution of the bar amplitude, |As2|, after
the addition of a black hole with Mgy = 0.001 when the soft-
ening length of the black hole, epy, is varied. Black hole
growth was completed at ¢ = 150. As a reference, the time
evolution of the bar amplitude without adding a black hole is
also shown.

reached its full mass.

In choosing a suitable tgrqw, it is useful to compare the
above selected values for t.,, with the typical rotation
periods of the bars in the simulations, T},. To estimate T},
the phase angle ¢y, (t) of the bar pattern is derived from
the phase of the expansion coefficients, As5(t), divided by
2 (the number of arms), as explained in section 2. Thus,
the bar rotation period can be calculated from the time
derivative of ¢y, (t). We obtain Qy, =0.270 at around ¢ =100
when there was no BH. This means that the bar rotation
period is Ty, = 27/Qp = 23.4. Consequently, tgrow = 50 is
at least more than twice as long as Ty, while tgrow = 25 is
comparable to Tj,. In addition, ¢grow = 50 is much longer
than the dynamical times of stars near the center of the
disk. Therefore, the choice of tgow = 50 is reasonable to
regard the black hole growth as adiabatic.

Appendix 2. Softening Length of a Black Hole

We consider to what degree the softening length of a
black hole, egn, affects the bar amplitude when the black
hole mass is small. Figure 12 shows the time evolution
of the bar amplitude after the addition of a BH with
Mgu = 0.001 for egg = 0.005 and egyg = 0.01. The value
of egg = 0.005 corresponds closely to one-ninth of Rgy for
Mgy = 0.001, where Rpy is the radius within which the
disk contains the assigned Mgy, as explained in section 2.
In the simulation for egg = 0.005, we adopt At = 0.0025
to ensure that the total energy of the system after the full
growth of the BH is conserved to better than four signifi-
cant figures. The rest of the simulation parameters is the
same as those for egg = 0.01.

We find from figure 12 that the bar amplitude is reduced
more effectively for egg = 0.005 than that for egg = 0.01
after the full growth of the BH (¢ > 150), but that the
difference in bar amplitude between the two cases is rela-
tively small. In fact, the final bar amplitudes are 0.0280
and 0.0306 for egg = 0.005 and egg = 0.01, respectively.
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In addition, the decay time scale, Tqecay, is 1.69 x 1010 yr
for egg = 0.005 while it is 1.44 x 10'° yr for epg = 0.01,
if we estimate it from a least-squares fit to the bar ampli-
tude between ¢ = 350 and ¢ = 400 on the assumption that
the bar amplitude decays exponentially.

As the softening length of a BH is smaller, many more
large-angle scatterings of stars made by the BH will be
captured. In this respect, our choice of egyg = 0.01 for all
BH masses will lead to the loss of such large-angle scat-
terings more seriously for smaller BH masses. As demon-
strated from figure 12, this loss is considered to be not
so large, even for small BH masses. However, the re-
sult demonstrated here indicates that small-mass BHs can
have a larger destructing impact upon a bar than those
shown in subsection 3.1, if their softening length is made
smaller.

References

Aoki, S., & Iye, M. 1978, PASJ, 30, 519

Athanassoula, E., Lambert, J. C., & Dehnen, W. 2005,
MNRAS, in press (astro-ph/0507566)

Athanassoula, E., & Misiriotis, A. 2002, MNRAS, 330, 35

Berentzen, 1., Heller, C. H., Shlosman, 1., & Fricke, K. J. 1998,
MNRAS, 300, 49

Bournaud, F., & Combes, F. 2002, A&A, 392, 83

Chatterjee, P., Hernquist, L., & Loeb, A. 2002a, ApJ, 572, 371

Chatterjee, P., Hernquist, L., & Loeb, A. 2002b, Phys. Rev.
Lett., 88, 1103

Das, M., Teuben, P. J., Vogel, S. N., Regan, M. W_, Sheth, K.,
Harris, A. 1., & Jefferys, W. H. 2003, ApJ, 582, 190

Debattista, V. P., Carollo, C. M., Mayer, L., & Moore, B. 2004,
ApJ, 604, L93

Earn, D. J. D., & Sellwood, J. A. 1995, ApJ, 451, 533

Elmegreen, B. G., Elmegreen, D. M., & Hirst, A. C. 2004, ApJ,
612, 191

Eskridge, P. B., et al. 2000, AJ, 119, 536

Freeman, K. C. 1970, AplJ, 160, 811

Friedli, D., & Benz, W. 1993, A&A, 268, 65

Hasan, H., & Norman, C. 1990, ApJ, 361, 69

Hasan, H., Pfenniger, D., & Norman, C. 1993, ApJ, 409, 91

Hernquist, L. 1993, ApJS, 86, 389

Hernquist, L., & Barnes, J. E. 1990, ApJ, 349, 562

Hernquist, L., & Katz, N. 1989, ApJS, 70, 419

Hernquist, L., & Ostriker, J. P. 1992, ApJ, 386, 375

Hozumi, S. 1997, AplJ, 487, 617

Jogee, S., et al. 2004, ApJ, 615, L105

Kormendy, J. 1988, AplJ, 335, 40

Kormendy, J., & Gebhardt, K., 2001, in AIP Conf. Proc., Vol.
586, 20th Texas Symposium on relativistic astrophysics, ed.
J. C. Wheeler & H. Martel (New York: American Institute
of Physics, Melville), 363

Kuzmin, G. 1956, AZh., 33, 27

Lewis, J. R., & Freeman, K. C. 1989, AJ, 97, 139

Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21

Martinez-Valpuesta, I., & Shlosman, I. 2004, AplJ, 613, L29

Norman, C. A., Sellwood, J. A., & Hasan, H. 1996, AplJ, 462,
114

Press, W. H., Flannery, B. P., Teukolsky, S. A. &
Vetterling, W. T. 1986, in Numerical Recipes: The Art of
Scientific Computing (Cambridge: Cambridge University
Press), 631

Evolution of Barred Galaxies with Massive BHs 13

Quinlan, G. D., & Hernquist, L. 1997, New Astron., 2, 533

Raha, N., Sellwood, J. A., James, R. A.) & Kahn, F. D. 1991,
Nature, 352, 411

Regan, M. W., Thornley, M. D., Helfer, T. T., Sheth, K,
Wong, T., Vogel, S. N., Blitz, L., & Bock, D. C.-J. 2001,
ApJ, 561, 218

Sakamoto, K., Okumura, S. K., Ishizuki, S., & Scoville, N. Z.
1999, AplJ, 525, 691

Shen, J., & Sellwood, J. A. 2004, AplJ, 604, 614

Sheth, K., Regan, M. W., Scoville, N. Z., & Strubbe, L. E.
2003, ApJ, 592, L13

Toomre, A. 1963, ApJ, 138, 385

Toomre, A. 1964, AplJ, 139, 1217

Tremaine, S.; et al. 2002, ApJ, 574, 740

van der Kruit, P. C.,; & Searle, L. 1981, A&A, 95, 105



